# Mikroprocesorový regulátor MRS 04 – 1xxx



# TECHNICKÁ DOKUMENTACE Výrobce:



Lomnická 111, 509 01 Nová Paka Česká republika tel./fax: 493 721 414, 493 721 515, 493 721 995 e-mail: apo@apoelmos.cz http://www.apoelmos.cz



Květen 2004, TD-R-12-01

## 1. Úvod

Regulátor MRS 04 je kompaktní univerzální regulační systém, určený k monitorování a řízení technologických procesů. Konkrétně například pro řízení procesu v sušárnách, vypalovacích pecích, udírnách, mrazírnách, pekárnách, zemědělských provozech, výměníkových stanicích nebo např. pro řízení klimatu v obytných i průmyslových prostorech.

### 2. Popis

### 2.1 Čelní panel



#### 1 - Displej

Dvojitý displej zobrazuje zároveň naměřenou i žádanou hodnotu regulované veličiny v příslušném okruhu. Naměřená hodnota je na vrchním řádku, žádaná hodnota na spodním řádku. Při programování parametrů měření a regulace displej poskytuje přehledná hlášení.

#### 2 - Kontrolky okruhů

Číslo zvoleného okruhu je indikováno příslušnou kontrolkou. Výběr okruhů je pomocí kláves "šipka nahoru" a "šipka dolů".

#### 3 - Kontrolky stavu výstupů

Kontrolky "1" až "4" indikují stav jednotlivých výstupů takto: kontrolka svítí - výstup sepnut, kontrolka nesvítí - výstup vypnut.

#### 4 - Kontrolka "MODE"

Kontrolka "MODE" indikuje přítomnost v režimu programování.

#### 5 - Klávesa "šipka nahoru"

Klávesa "šipka nahoru" slouží k listování ve výběru okruhů, parametrů a k nastavování číselných údajů při programování. Při přidržení klávesy probíhá listování nebo nastavování zrychleně.

#### 6 - Klávesa "šipka dolů"

Klávesa "šipka dolů" slouží k listování ve výběru okruhů, parametrů a k nastavování číselných údajů při programování. Při přidržení klávesy probíhá listování nebo nastavování zrychleně.

#### 7 - Klávesa "ENTER"

Klávesa "ENTER" slouží ke vstupu do programování parametrů a k potvrzování nastavených údajů.

### 2.2 Vstupní část

MRS 04 je čtyřokruhový regulátor. Na vstupy regulátoru lze připojit proudové signály 4 až 20 mA nebo 0 až 20 mA nebo napěťový signál 0 až 5 V. Přepnutí na jiný druh vstupního signálu lze provést z klávesnice.

#### 2.3 Výstupní část

Výstupní prvky jsou čtyři miniaturní relé s maximálním zatížením 250 VAC, 2 A. Kontakty relé jsou chráněny varistory. Při spínání induktivních zátěží se doporučuje pro zvýšení spolehlivosti a snížení rušení zapojit k příslušným kontaktům odrušovací RC články (např. 0,1 aF + 220 K).

**Pozor:** Připojené varistory jsou určeny pro maximální provozní napětí 250 Vef. Při spínání některých motorů v jednofázovém zapojení s kondenzátorem pro posuv fáze může dojít u vinutí připojeného přes kondenzátor k trvalému zvýšení pracovního napětí nad uvedenou hodnotu dovoleného napětí varistoů.

Regulátor je vybaven funkcí optického alarmu (blikání kontrolky okruhu po dosažení alarmové hodnoty).

Výstup dat je realizován po seriové komunikační lince RS 232. Komunikace je obousměrná typu master-slave.

Spojitý analogový regulační výstup (16 bit) lze navolit pomocí propojky jako proudový  $0/4 \sim 20$  mA nebo napěťový  $0/2 \sim 10$  V. (Analogový výstup lze nastavit také invertovaný –  $20 \sim 0/4$  mA,  $10 \sim 0/2$  V). Analogový výstup lze využít pro řízení polohy servopohonu nebo jinou spojitou regulaci.

#### 2.4 Regulace

Regulátor v provedení MRS 04 - 1 x umožňuje regulaci na konstantní hodnotu. Žádaná hodnota pro příslušný okruh se zadává v menu COPP.

Typ regulace pro příslušný okruh lze zvolit v menu **REGO**. Možnosti jsou následující:

ONOF dvoustavová regulace

**PROI** proporcionální impulsní regulace

PRO3 proporcionální třístavová regulace

PIDIPID impulsní regulace

PID 3PID třístavová regulace

Analogový výstup je přiřazen k prvnímu regulačnímu okruhu. Při navolení regulace ONOF je analogový výstup řízen algoritmem PID, stejně jako při navolení regulace PIDI nebo PID3. Při navolení regulace PROI nebo PRO3 je analogový výstup řízen algoritmem proporcionálním.

### 2.5Technická data

Napájení

Příkon Pojistka

Displej

Desetinná tečka Vstupní signály: Počet vstupů Možnosti vstupních signálů

Výstupy: spínací analogový

datový

Přesnost měření Rozlišení Kalibrace Procesor Zálohování dat Pomocné napětí Provedení Rozměry Otvor do panelu Klávesnice Hmotnost Připojení Pracovní teplota Doba ustálení Krytí Připojení

Datový konektor Klávesnice MRS 04-xxx1=1/N/PE-230 VAC (+10 -15%), 50 Hz MRS 04-xxx2=24 VDC (+10 -15%) MRS 04-xxx3=24 VAC (+10 -15%), 50 Hz max. 6 VA pro napájení 230VAC - 0,05A (T 50 mA) pro napájení 24VAC, 24VDC - 0,63A(T 630 mA)

-999 ~ 9999 dvojitý čtyřmístný LED červený výška znaku 10 mm a 7,62 mm programově nastavitelná

#### 4

proudový 4 až 20 mA nebo 0 až 20 mA napěťový 0 až 5 V

4x relé 250 VAC, 2 A 16bit D/A převodník proudový 0  $\sim 20$  mA, 4  $\sim 20$  mA, 20  $\sim 0$  mA, 20 ~ 4 mA - zatěžovací odpor max. 500K napěťový  $0 \sim 10 \text{ V}, 2 \sim 10 \text{ V}, 10 \sim 0 \text{ V}, 10 \sim 2 \text{ V}$ - zatěžovací odpor min. 10kK RS 232, RS485 obousměrná komunikace rychlost 9600 Baud 11 přenosových bitů, komunikace master-slave  $\pm 0,1$  % z rozsahu  $\pm 1$  digit dle polohy desetinné tečky, max. 0,01 při 25°C a 40 % r.v. SAB 80C535 elektricky (EEPROM) 20 VDC, max. 30 mA (elektronická pojistka) panelové 96 x 48 x 119 mm 90,5 x 43,5 mm (s otvory  $\emptyset$  3 mm v rozích) foliová 3 klávesy 0.4 kg svorkovnice (max. průřez 2,5 mm)  $0 \sim 60 \ ^{\circ}C$ do 5 minut po zapnutí IP 54 (čelní panel) konektorová svorkovnice průřez vodiče do 2,5 mm<sup>2</sup> Cannon 9 V foliová 3 klávesy



### 2.7 Pokyny pro montáž

Regulátor se upevní do panelu pomocí dvou třmenů.

Vodiče se připojují do šroubovacích svorek na zadním panelu regulátoru. Svorky jsou řešeny jako 4 samostatné odnímatelné konstrukční bloky takto: svorka 1 až 5 - blok vstupů, svorka 6 až 9 - blok analogového výstupu, svorka 10 až 17 - blok reléových výstupů, svorka N, L, PE - blok napájení. Každý blok svorek je možno po překonání aretační síly vysunout z přístroje směrem dozadu. Připojovací vodiče je možno připojit k odejmutým blokům svorek a pak bloky do přístroje zasunout.

Konektor Cannon slouží k připojení sériové komunikační linky RS 232. Dvoupólový spínač DIP slouží jako hardwarová ochrana nastavených dat.



přepis dat povolen

přepis dat zakázán - v této poloze DIP spínače lze parametry libovolně měnit, ale po zapnutí a vypnutí napájení se objeví parametry nastavené před zákazem přepisu

### 2.8 Zapojení svorkovnice



### 2.9 Zapojení propojovacího pole

V propojovacím poli nutno nastavit pomocí dodávaných propojek typ zvoleného vstupního signálu, případně typ analogového výstupu. Propojovací pole je přístupné po vyjmutí svorek 1 až 5 a 6 až 9. Pokud příslušné piny pro volbu vstupního signálu nejsou propojeny, je příslušný vstup napěťový. Pokud příslušné piny pro volbu vstupního signálu jsou propojeny dodanou propojkou, je příslušný vstup proudový. Je možná libovolná kombinace napěťových a proudových vstupů.



Při volbě typu vstupního signálu a typu analogového výstupu nutno respektovat nastavení propojovacího pole při zadávání parametrů v programovacím módu.

## 3. Programovací manuál

V programovacím manuálu je podrobný popis nastavení volitelných parametrů regulátoru. Při uvádění regulátoru do provozu je nutno přístroj přizpůsobit konkrétní aplikaci uživatele nastavením požadovaných parametrů. Standardně jsou v programovacím módu nastaveny výrobcem předvolené hodnoty, které jsou uvedeny v tabulce mezních hodnot parametrů na str. 53. Před naprogramováním je nutno zkontrolovat, zda přepínač pro hardwarovou ochranu dat je na zadním panelu regulátoru v poloze vypnuto. Po ukončení programování je možno chránit parametry proti přepisu přepnutím obou pólů přepínače do polohy ON, tzn. že parametry lze libovolně měnit, ale po vypnutí a zapnutí napájení se objeví parametry nastavené před zákazem přepisu.



#### 3.1 Blokové schéma obsluhy

#### 3.2 Volba čísla okruhu



Pomocí kláves "šipka dolů" nebo "šipka nahoru" lze v hlavním menu zvolit požadované číslo okruhu. Číslo zvoleného okruhu je signalizováno kontrolkou 1 až 4.

#### 3.3 Nastavení žádané hodnoty [0 MP

V menu COMP se nastavuje žádaná hodnota pro příslušný okruh.



Nejprve zvolte požadované číslo okruhu (viz. volba čísla

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu

Na spodním řádku displeje bliká ikona COMP. Stiskněte

Na vrchním řádku displeje se objeví žádaná hodnota, na spodním řádku bliká menu COMP. Stiskněte klávesu "ENTER".

Na vrchním řádku displeje bliká nastavení žádané hodnoty. Klávesami "šipka nahoru" a "šipka dolů" nastavte žádanou

Potvrďte klávesou "ENTER".

Tím je nastavená žádaná hodnota potvrzena. Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu ICON END\_.

Stiskněte klávesu "ENTER".

Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu END\_.

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

### 3.4 Odečtení velikosti akčního zásahu PROC

V menu PROC odečtete údaj v procentech, který značí momentální velikost akčního zásahu pro příslušný regulační okruh. Pokud máte v příslušném okruhu zavolenu regulaci ONOF, objeví se v menu PROC 0.



Nejprve zvolte požadované číslo okruhu (viz. volba čísla okruhu).

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona CO∏P. Stiskněte klávesu "ENTER".

Objeví se nastavení žádané hodnoty. Pomocí kláves "šipka dolů" a "šipka nahoru" nastavte menu *PROC*.

Údaj na vrchním řádku displeje značí momentální velikost akčního zásahu v procentech. Pokud máte zavolenu regulaci O N O F, na vrchním řádku je 0. Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu  $I C O N E N D_{-}$ .

Stiskněte klávesu "ENTER".

Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu END\_.

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

### 3.5 Nastavení optického alarmu low 0 P L \_

V menu *OPL* se nastavuje spodní hranice optického alarmu pro příslušný okruh. Při poklesu naměřené hodnoty pod zadanou hodnotu bliká kontrolka příslušného čísla okruhu, tj. tzv. "optický alarm". Podmínkou je zavolení příslušného okruhu v hlavním menu.



### 3.6 Nastavení optického alarmu high 0 P H \_

V menu  $OPH_$  se nastavuje vrchní hranice optického alarmu pro příslušný okruh. Při zvýšení naměřené hodnoty nad zadanou hodnotu bliká kontrolka příslušného čísla okruhu, tj. tzv. "optický alarm". Podmínkou je zavolení příslušného okruhu v hlavním menu.



26.2 24.5

### 3.7 Nastavení typu regulace REGO

V menu REGO se nastavuje požadovaný typ regulace pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Možnosti jsou následující:

- **ONDF** dvoustavová regulace
- PRDI proporcionální impulsní regulace
- PRO3 proporcionální třístavová regulace
- PIDIPID impulsní regulace
- PID 3 PID třístavová regulace



Nejprve zvolte požadované číslo okruhu (viz. volba čísla okruhu).

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona COPP. Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte ikonu REGO.

Stiskněte klávesu "ENTER".

Na vrchním řádku displeje se objeví zadaný typ regulace pro příslušný okruh, na spodním řádku bliká menu REGO. Pro změnu typu regulace stiskněte klávesu "ENTER".

Klávesami "šipka nahoru" a "šipka dolů" nastavte žádaný typ regulace.

Potvrďte klávesou "ENTER".

Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu  $I \subseteq O \cap I \subseteq N \supset D_{-}$ .

Stiskněte klávesu "ENTER".



### 3.7.1 Charakteristika dvoustavové regulace 0 N 0 F



HYST hystereze

#### 3.7.2 Charakteristika proporcionální regulace PROI, PRO3

 $\mathbf{u}(\mathbf{k}) = \mathbf{K} \ast \mathbf{e}(\mathbf{k}) + \mathbf{P}\mathbf{w}$ 

- u (k) akční zásah v k-tém okamžiku
- K zesílení (proporcionální konstanta \_ PB \_)
- e (k) odchylka od žádané hodnoty v k-tém okamžiku
- Pw výkonový posuv (𝒫 𝒴 \_)

Příklad:

Máte zadány následující hodnoty:

žádaná hodnota [0∏P 100°C proporcionální konstanta \_PB\_ 5 výkonový posuv PU \_ 10%

Naměřená teplota v k-tém okamžiku je 90°C. Velikost akčního zásahu vypočteme dle předchozího vztahu takto:

u(k) = 5 \* 10 + 10 = 60 % akčního zásahu

Tento údaj lze odečíst v menu *PROC* v příslušném okruhu.

Při zadané regulaci proporcionální impulsní PROI značí tento údaj dobu sepnutí výstupu v nastavené periodě  $PER_{-}$ . Je-li například doba periody zadána 10 s, je při 60 % akčního zásahu regulační výstup 6 s sepnut a 4 s vypnut.

Při zadané regulaci proporcionální třístavové PRO3 značí tento údaj momentální polohu servopohonu, tzn. že servopohon je ze 60 % otevřen.

Pokud využíváte proporcionální regulaci pro topení, zadejte v menu proporcionální konstanta  $PB_k$  kladnou hodnotu.

Pokud využíváte proporcionální regulaci pro chlazení, zadejte v menu proporcionální konstanta  $PB_z$ ápornou hodnotu.

### 3.7.3 Charakteristika PID regulace PIDI, PID3

- u (k) akční zásah v k-tém okamžiku
- K zesílení (proporcionální konstanta \_ PB \_)
- e (k) odchylka od žádané hodnoty v k-tém okamžiku
- T doba vzorkování (\_TPID)
- Ti integrační konsatnta (INT\_)
- Td derivační konstanta ( $D \in R_{-}$ )

Seřízení PID regulátoru spočívá ve vhodném nastavení jeho konstant. Metoda AUTO-TUNE (spuštění v menu tune) vede k základnímu výpočtu nastavení konstant. Je nutné počítat s tím, že takto vypočtená nastavení jsou pouze výchozí orientační hodnoty. V praxi je vždy potřebné regulátor při uvádění do provozu "vyladit".

Při průměrném regulačním pochodu má regulovaná veličina po dosažení žádané hodnoty ještě dvakrát až čtyřikrát překývnout a pak se ustálit.

Dostanete-li při základním nastavení parametrů regulátoru (AUTO-TUNE) přechodovou charakteristiku se správně rychlým nárůstem, ale s velkým přeregulováním, či velkými dalšími překmity, měli byste ponechat proporcionální konstantu  $_PB_a$  a změnit časové konstanty - integrační ( $INT_a$ ) zvětšit a derivační ( $DER_a$ ) zmenšit.

Bude-li naopak základní přechodová charakteristika mít charakter soustavy s velkým tlumením, tj. s dlouhou dobou regulace a žádným přeregulováním, je třeba zmenšit integrační konstantu ( $INT_{-}$ ) a zvětšit derivační konstantu ( $DER_{-}$ ).

Momentální velikost akčního zásahu pro příslušný okruh lze odečíst v menu PROC.

Při zadané regulaci PID impulsní PIDI značí tento údaj dobu sepnutí regulačního výstupu v poměru k době vypnutí. Je-li například velikost akčního zásahu 35, je regulační výstup 35 % sepnut a 65 % vypnut. Četnost spínání a vypínání závisí na zadané době vzorkování TPID.

Při zadané regulaci PID třístavové PID 3 značí údaj v menu PRDC momentální polohu servopohonu, tzn. že servopohon je ze 60 % otevřen.

Pokud využíváte PID regulaci pro topení, zadejte v menu proporcionální konstanta \_ PB \_ kladnou hodnotu.

Pokud využíváte PID regulaci pro chlazení, zadejte v menu proporcionální konstanta \_ PB \_ zápornou hodnotu.

### 3.8 Nastavení parametrů regulace 0 N 0 F

### 3.8.1 Nastavení automatického časovače změn výstupu \_ AT \_

V menu  $\_RT\_$  se nastavuje časový údaj v sekundách, který značí minimální možnou dobu mezi změnami stavu výstupů pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Například: nastavíte v menu  $\_RT\_$  10 sekund. Při překročení žádané hodnoty vypne příslušný výstup. Při prudkém poklesu naměřené hodnoty sepne příslušný výstup nejdříve 10 s od předchozího vypnutí.





Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu E $ND_-$ .

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

### 3.8.2 Nastavení hystereze H y S T



### 3.8.3 Nastavení chlazení / topení 🕻 🛛 H E

V menu COHE se nastavuje druh regulace v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Možnosti jsou následující:

COLL chlazení

HERT topení

Význam tohoto parametru je zřejmý z charakteristiky regulace 0 N 0 F (str. 16).





Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

## 3.9 Nastavení parametrů regulace PROI

### 3.9.1 Nastavení proporcionální konstanty \_ PB \_

V menu \_PB\_ se nastavuje proporcionální konstanta pro regulaci PROI v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice proporcionální regulace na str. 16.



<u>END</u> 26.2 24.5

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

### 3.9.2 Nastavení výkonového posuvu PU\_

V menu  $PU_{-}$  se nastavuje výkonový posuv pro regulaci PROIv příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice proporcionální regulace na str. 16.





### 3.9.3 Nastavení periody pulsu PER\_

V menu  $PER_{-}$  se nastavuje doba periody pulsu pro regulaci PROI v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Perioda pulsu je čas v sekundách, v průběhu kterého dojde k vypnutí a zapnutí příslušného regulačního výstupu. Tato doba se v průběhu regulace nemění, mění se pouze poměr mezi časem zapnutí a časem vypnutí výstupu v dané periodě v závislosti na naměřené hodnotě a zadaných konstantách  $_PB_a PW_a$ .





### 3.10 Nastavení parametrů regulace PRO3

#### **3.10.1** *Nastavení proporcionální konstanty* \_ PB \_

V menu  $_PB_$  se nastavuje proporcionální konstanta pro regulaci PRO3 v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice proporcionální regulace na str. 16.

Nastavení proporcionální konstanty  $PB_{pro}$  regulaci PRO3 je shodné s nastavením pro regulaci PRO1 (viz str. 24). Pouze v nastavení typu regulace REGO musí být zadána regulace proporcionální třístavová PRO3.

#### 3.10.2 Nastavení výkonového posuvu P 🖌 \_

V menu  $PU_{-}$  se nastavuje výkonový posuv pro regulaci  $PRO \exists v$  příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice proporcionální regulace na str. 16.

Nastavení výkonového posuvu  $P U_{-}$  pro regulaci  $P R O \exists$  je shodné s nastavením pro regulaci P R O I (viz str. 25). Pouze v nastavení typu regulace R E G O musí být zadána regulace proporcionální třístavová  $P R O \exists$ .

#### 3.10.3 Nastavení doby přeběhu servopohonu DSER

V menu D 5 E R se nastavuje doba přeběhu servopohonu v sekundách. Podmínkou je zavolení příslušného okruhu v hlavním menu.

Dobu serva lze nastavit pouze v prvním nebo ve třetím okruhu. Pokud zavolíte na prvním (třetím) okruhu třístavovou regulaci (PRO3 nebo PID3), pak zavolená regulace na druhém (čtvrtém) okruhu bude ignorována (nastavené parametry neovlivní výstup).

Jestliže je třístavová regulace zavolena na prvním okruhu, je realizována na výstupech out1 a out2, přičemž out1 otvírá a out2 zavírá servopohon. Je-li třístavová regulace zavolena na třetím okruhu, je realizována na výstupech out3 a out4, přičemž out3 otvírá a out4 zavírá servopohon. Zavolíte-li třístavovou regulaci na druhém (čtvrtém) okruhu, tato regulace bude ignorována a výstup out2 (out4) se nastaví do klidového stavu.

Dobu serva je nutno nastavit dle typu použitého servopohonu. Podle nastaveného údaje přístroj reguluje polohu servopohonu v závislosti na ostatních zadaných parametrech regulace.



Nejprve zvolte požadované číslo okruhu (viz. volba čísla

Pro vstup do programování veškerých parametrů příslušného

Na spodním řádku displeje bliká ikona COMP. Pomocí kláves

Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte menu

Pro nastavení doby přeběhu servopohonu stiskněte klávesu

nastavte



### 3.10.4 Nastavení automatického časovače změn výstupu \_ AT \_

V menu  $\_RT\_$  se nastavuje časový údaj v sekundách, který značí minimální možnou dobu mezi změnami polohy servopohonu. Podmínkou je zavolení příslušného okruhu v hlavním menu.

Nastavení automatického časovače změn výstupů  $\_RT\_$  pro regulaci PRO3 je shodné s nastavením pro regulaci DNDF (viz str. 16).

### 3.11 Nastavení parametrů regulace PIDI

#### 3.11.1 Nastavení proporcionální konstanty \_ PB \_

V menu \_PB\_ se nastavuje proporcionální konstanta pro regulaci PIDI v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.

Nastavení proporcionální konstanty  $\_PB\_$  pro regulaci PIDI je shodné s nastavením pro regulaci PRDI (viz str. 24). Pouze v nastavení typu regulace REDD musí být zadána regulace PID impulsní PIDI.

### 3.11.2 Nastavení integrační konstanty | NT\_

V menu *INT* – se nastavuje integrační konstanta pro regulaci *PIDI* v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.



### 3.11.3 Nastavení derivační konstanty DER\_

V menu  $DER_{-}$  se nastavuje derivační konstanta pro regulaci PIDI v příslušném okruhu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.



Nejprve zvolte požadované číslo okruhu (viz. volba čísla okruhu).

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona COPP. Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte ikonu REGO.

Stiskněte klávesu "ENTER".

Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte menu  $\mathsf{DER}$  \_ .

Pro nastavení derivační konstanty stiskněte klávesu "ENTER".

Pomocí kláves "šipka dolů" a "šipka nahoru" nastavte požadovaný údaj.

Potvrďte klávesou "ENTER".

Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu  $I \subseteq O \cap I \subseteq N \supset I$ .

Stiskněte klávesu "ENTER".

Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu E $ND_-$ .

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

### 3.11.4 Nastavení doby vzorkování TPID

V menu TPID se nastavuje doba vzorkování pro regulaci PIDIv příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. V zadaných intervalech probíhá odběr vzorků a přepočítávání PID konstant pro regulaci.



#### 3.12 Nastavení parametrů regulace PID 3

#### 3.12.1 Nastavení proporcionální konstanty \_ PB \_

V menu \_PB\_ se nastavuje proporcionální konstanta pro regulaci PID3 v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.

Nastavení proporcionální konstanty  $\_PB\_$  pro regulaci  $PID \exists$  je shodné s nastavením pro regulaci PROI (viz str. 24). Pouze v nastavení typu regulace REGO musí být zadána regulace PID třístavová  $PID \exists$ .

#### 3.12.2 Nastavení integrační konstanty | NT\_

V menu INT \_ se nastavuje integrační konstanta pro regulaci PID 3 v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.

Nastavení integrační konstanty  $INT_p$  pro regulaci  $PID \exists$  je shodné s nastavením pro regulaci PIDI (viz str. 32). Pouze v nastavení typu regulace REGO musí být zadána regulace PID třístavová  $PID \exists$ .

#### 3.12.3 Nastavení derivační konstanty DER\_

V menu  $DER_$  se nastavuje derivační konstanta pro regulaci  $PID \exists v$  příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. Význam tohoto parametru je popsán v charakteristice PID regulace na str. 17.

Nastavení derivační konstanty  $D \in R_{-}$  pro regulaci  $P \mid D \exists$  je shodné s nastavením pro regulaci  $P \mid D \mid$  (viz str. 33). Pouze v nastavení typu regulace  $R \in G D$  musí být zadána regulace PID třístavová  $P \mid D \exists$ .

#### 3.12.4 Nastavení doby přeběhu servopohonu DSER

V menu D S E R se nastavuje doba přeběhu servopohonu v sekundách. Podmínkou je zavolení příslušného okruhu v hlavním menu.

Dobu serva lze nastavit pouze v prvním nebo ve třetím okruhu. Pokud zavolíte na prvním (třetím) okruhu třístavovou regulaci ( $PRD \exists$  nebo  $PID \exists$ ), pak zavolená regulace na druhém (čtvrtém) okruhu bude ignorována (nastavené parametry neovlivní výstup).

Jestliže je třístavová regulace zavolena na prvním okruhu, je realizována na výstupech outl a out2, přičemž outl otvírá a out2 zavírá servopohon. Je-li třístavová regulace zavolena na třetím okruhu, je realizována na výstupech out3 a out4, přičemž out3 otvírá a out4 zavírá servopohon. Zavolíte-li třístavovou regulaci na druhém (čtvrtém) okruhu, tato regulace bude ignorována a výstup out2 (out4) se nastaví do klidového stavu.
Dobu serva je nutno nastavit dle typu použitého servopohonu. Podle nastaveného údaje přístroj reguluje polohu servopohonu v závislosti na ostatních zadaných parametrech regulace.

Nastavení doby přeběhu servopohonu  $D \subseteq E R$  pro regulaci  $P \mid D \exists$  je shodné s nastavením pro regulaci  $P R \cup \exists$  (viz str. 29). Pouze v nastavení typu regulace  $R \in \bigcup musí$  být zadána regulace PID třístavová  $P \mid D \exists$ .

## 3.12.5 Nastavení doby vzorkování TPID

V menu TPID se nastavuje doba vzorkování pro regulaci PID 3 v příslušném okruhu. Podmínkou je zavolení příslušného okruhu v hlavním menu. V zadaných intervalech probíhá odběr vzorků a přepočítávání PID konstant pro regulaci.

Nastavení doby vzorkování TPID pro regulaci PID 3 je shodné s nastavením pro regulaci PIDI (viz str. 34). Pouze v nastavení typu regulace REGO musí být zadána regulace PID třístavová PID 3.

# 3.13 Nastavení typu snímače 5EN5

V menu 5 E N 5 se nastavuje typ připojeného vstupního signálu pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Možnosti připojených vstupních signálů jsou následující:

- Ч\_ПЯ proudový signál 4 až 20 mA
- 0 \_ fl fl proudový signál 0 až 20 mA
- 0 \_ 5 ν napěťový signál 0 až 5 V

26.2

24.5

MODE

COMP

SENS

- M 8

M 8

**"1 H** 

SENS

SENS

END

26.2 24.5

SENS

SENS

Nejprve zvolte požadované číslo okruhu (viz. volba čísla okruhu).

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona  $CO\Pi P$ . Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte ikonu SENS.

Stiskněte klávesu "ENTER".

Pro nastavení typu snímače stiskněte klávesu "ENTER".

Klávesami "šipka nahoru" a "šipka dolů" nastavte požadovaný údaj.

Potvrďte klávesou "ENTER".

Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu  $I C O N E N D_{-}$ .

Stiskněte klávesu "ENTER".

Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu  $E ND_{-}$ .

Stiskněte klávesu "ENTER". Kontrolka "MODE" zhasne.

# 3.14 Nastavení desetinné tečky \_ D P \_

V menu \_ D P \_ se nastavuje požadovaná poloha desetinné tečky pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu.



# 3.15 Nastavení počátku vstupního rozsahu (start senzor) 5785

V menu STRS se nastavuje počátek rozsahu měření příslušné připojené vstupní veličiny pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Příklad zadání:

Chcete připojit snímač s výstupem 4 až 20 mA, odpovídajícím teplotě -30 až +70°C. To znamená, že start senzoru 57R5 nutno zadat -30, přičemž jako typ senzoru 5EN5 nutno zadat 4 až 20 mA.





Stiskněte klávesu "ENTER".

# 3.16 Nastavení konce vstupního rozsahu (end senzor) E N D 5

V menu END5 se nastavuje konec rozsahu měření příslušné připojené vstupní veličiny pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Příklad zadání:

Chcete připojit snímač s výstupem 4 až 20 mA, odpovídajícím teplotě -30 až +70°C. To znamená, že end senzoru E ND S nutno zadat 70, přičemž jako typ senzoru S E N S nutno zadat 4 až 20 mA.





Stiskněte klávesu "ENTER".

# 3.17 Nastavení offsetu (posuvu naměřené hodnoty) 0 F F 5

V menu DFF5 se nastavuje požadovaná hodnota offsetu (posuvu) měření pro příslušný okruh. Podmínkou je zavolení příslušného okruhu v hlavním menu. Pokud není potřeba nastavit žádný posuv nebo kompenzaci měření, nastavte 0.





# 3.18 Přířazení vstupu k regulačnímu okruhu

V tomto menu se přiřazují vstupní veličiny k jednotlivým regulačním okruhům. Podmínkou je zavolení příslušného okruhu v hlavním menu. K příslušnému výstupu (out1, out2, out3, out4) lze přiřadit libovolný vstup (in1, in2, in3, in4). Je možno též k několika výstupům (k několika regulačním okruhům) přiřadit jeden a tentýž vstup. Tím je umožněno pomocí jednoho vstupního signálu regulovat zároveň například topení i chlazení apod. Standardní přiřazení vstupů k regulačním okruhům je out1/in1, out2/in2, out3/in3 a out4/in4.

Toto menu dává regulátoru obrovskou variabilnost. Pokud si nebudete vědět rady s nastavením, volejte výrobce. Naši technici Vám rádi poskytnou informace.



Nejprve zvolte požadované číslo okruhu (viz. volba čísla okruhu).

Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona COPP. Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte ikonu SENS.

Stiskněte klávesu "ENTER".

Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte menu  $0\,U\,T$ l.



## 3.19 Nastavení vstupního integračního filtru FILT

V menu F1LT se nastavuje hodnota vstupního integračního filtru. Toto nastavení je společné pro všechny regulační okruhy. Čím vyšší hodnotu zadáte, tím pomaleji reaguje regulátor na změnu naměřené hodnoty a je odolnější proti rušivým vlivům.



## 3.20 Nastavení přístupového hesla HE51

V menu H E 5 i se nastavuje přístupové heslo. Toto nastavení je společné pro všechny regulační ohruhy. Nastavením přístupového hesla lze zamezit nekvalifikovanému zásahu do parametrů regulace. Heslo H E 5 i slouží k přístupu do veškerých nastavení kromě menu  $E D \Pi P$ . Z výroby je zadáno heslo 0. V tomto případě se regulátor chová tak, jako by žádné heslo zadáno nebylo a přístup do nastavování není omezen. Zadáte-li libovolné číselné heslo, lze vstoupit do nastavování parametrů jedině po zadání tohoto hesla. Jestliže chcete heslo změnit, musíte si zajistit přístup do zadávání hesla znalostí starého přístupového hesla. Pokud toto heslo zapomenete, zadejte namísto něj kód 555, čímž se dostanete do zadání hesla.

Regulátor vyžaduje heslo vždy pouze jednou v každé ikoně. Například pokud zadáváte v ikoně  $ALA_$  parametr  $OPL_$  (optický alarm low), vyžaduje regulátor při vstupu do nastavení tohoto parametru přístupové heslo. Pokud jej zadáte správně, máte volný přístup do všech ostatních parametrů pod ikonou  $ALA_$  ( $OPL_$ ,  $OPH_$ ).





# 3.21 Nastavení přístupového hesla HES2

V menu H E 52 se nastavuje přístupové heslo pro nastavení žádané hodnoty C O f P a spuštění regulace  $\_ 50 \_$ . Toto nastavení je společné pro všechny regulační okruhy. Nastavením přístupového hesla lze zamezit nekvalifikovanému zásahu do nastavení žádané hodnoty a spuštění regulace. Z výroby je zadáno heslo 0. V tomto případě se regulátor chová tak, jako by žádné heslo zadáno nebylo a přístup do nastavování žádané hodnoty není omezen. Zadáte-li libovolné číselné heslo, lze vstoupit do nastavování žádané hodnoty jedině po zadání tohoto hesla. Jestliže chcete heslo změnit, musíte si zajistit přístup do zadávání hesla znalostí starého přístupového hesla. Pokud toto heslo zapomenete, zadejte namísto něj kód 555, čímž se dostanete do zadání hesla.





# 3.22 Nastavení adresy přístroje RDR\_

V menu  $RDR_{-}$  se nastavuje adresa přístroje pro sériovou komunikaci. Z výroby je nastavena adresa 0.

Chcete-li zapojit více přístrojů do sítě, je nutno zadat každému přístroji jinou adresu, aby nedošlo ke kolizi dat.

# 3.23 Spuštění funkce AUTO-TUNE v menu TUNE

V menu TUNE je možno spustit automatické adaptivní ladění PID konstant v průběhu procesu (AUTO-TUNE). Podmínkou je zavolení příslušného okruhu v hlavním menu. Funkci AUTO-TUNE lze spustit pouze při zavolení regulace PIDI nebo PID 3.

Při náběhu soustavy zadejte  $\_$   $\forall$  E  $\leq$  v menu TUNE. Spuštění AUTO-TUNE je indikováno blikáním nápisu TUNE na spodním řádku displeje při zavolení příslušného okruhu v hlavním menu. Soustava poběží na plný výkon do 75% žádané hodnoty. Potom dá regulátor povel k vypnutí soustavy a probíhá měření PID konstant. Po tuto dobu není regulační výstup aktivován. Po ukončení měření nápis TUNE přestane blikat a soustava se rozběhne dle vypočítaných konstant  $\_PB\_$ ,  $INT\_$  a  $\_DER\_$ . Pokud využíváte PID regulaci pro topení, je nutno zadat před spuštěním AUTO-TUNE v menu proporcionální konstanta  $\_PB\_$  kladnou hodnotu. Jestliže se jedná o chlazení, zadejte proporcionální konstantu  $\_PB\_$  zápornou.





# 3.24 Nastavení typu analogového regulačního výstupu RNRL

V menu RNRL se nastavuje požadovaný typ analogového regulačního výstupu. Možnosti jsou následující:

 0-20
 0 až 20 mA (0 až 10 V)

 4-20
 4 až 20 mA (2 až 10 V)

 20-0
 20 až 0 mA (10 až 0 V)

 20-4
 20 až 4 mA (10 až 2 V)



Pro vstup do programování veškerých parametrů příslušného okruhu stiskněte klávesu "ENTER".

Rozsvítí se kontrolka "MODE", která značí přítomnost v režimu programování.

Na spodním řádku displeje bliká ikona CO∏P. Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte ikonu OST\_.

Stiskněte klávesu "ENTER".

Pomocí kláves "šipka dolů" a "šipka nahoru" nalistujte menu RNRL.

Pro nastavení typu analogového regulačního výstupu stiskněte klávesu "ENTER".

Pomocí kláves "šipka nahoru" a "šipka dolů" nastavte požadovaný typ analogového regulačního výstupu.

Potvrďte klávesou "ENTER".

Pro návrat do režimu ikon nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" menu  $I C O N E N D_{-}$ .

Stiskněte klávesu "ENTER".



거 - 기 도

8 N 8 L

Pro návrat do hlavního menu nalistujte pomocí kláves "šipka dolů" a "šipka nahoru" ikonu  $E N D_{-}$ .



Stiskněte klávesu "ENTER".

# 4. Mezní hodnoty parametrů

| Označení | Význam                           | Mezní hodnoty                | Z výroby   |
|----------|----------------------------------|------------------------------|------------|
| COMP     | žádaná hodnota                   | -999 až 9999                 | 0.0        |
| PROC     | velikost akčního zásahu          | 0 až 100 %                   |            |
| OPL-     | optický alarm low                | -999 až 9999                 | 0.0        |
| OPH-     | optický alarm high               | -999 až 9999                 | 100.0      |
| REGO     | typ regulace                     | ONOF, PROI, PRO3, PIDI, PID3 | ONOF       |
| -AT-     | automatický časovač změn         | 1 až 1000 s                  | 1 s        |
|          | výstupu                          |                              |            |
| HYST     | hystereze 0 až 9999              |                              | 0.0        |
| COHE     | chlazení / topení                | COOL, HEAT                   | HEAT       |
| -PB-     | proporcionální konstanta         | -500 až 500                  | 10.0       |
| PW-      | výkonový posuv                   | -100 až 100                  | 10.0       |
| PER-     | perioda pulsu                    | 1 až 9999 s                  | 10 s       |
| DSER     | doba serva                       | 1 až 9999 s                  | 60 s       |
| INT-     | integrační konstanta             | 0.01 až 9999                 | 100.0      |
| DER-     | derivační konstanta 0.01 až 9999 |                              | 1.0        |
| TPID     | doba vzorkování                  | 0.5 až 1000 s (krok 0.5 s)   | 1.0 s      |
| SENS     | typ snímače                      | proudový 4 až 20 mA          | 4 až 20 mA |
|          |                                  | proudový 0 až 20 mA          |            |
|          |                                  | napěťový 0 až 5 V            |            |
| -DP-     | desetinná tečka                  | 0., 0.0, 0.00                | 0.0        |
| STRS     | start senzoru                    | -999 až 9999                 | 0.0        |
| ENDS     | end senzoru                      | -999 až 9999                 | 100.0      |
| OFFS     | offset                           | -999 až 9999                 | 0.0        |
| OUT      | přiřazení vstupu k okruhu        | out1 / in1 až in4            | out1 / in1 |
|          |                                  | out2 / in1 až in4            | out2 / in2 |
|          |                                  | out3 / in1 až in4            | out3 / in3 |
|          |                                  | out4 / in1 až in4            | out4 / in4 |
| FILT     | vstupní integrační filtr         | 0 až 15                      | 6          |
| HES1     | přístupové heslo                 | -999 až 9999                 | 0          |
| HES2     | příst. heslo pro COMP            | -999 až 9999                 | 0          |
| ADR-     | adresa přístroje                 | 0 až 126                     | 0          |
| TUNE     | ladění AUTO-TUNE                 | NO, YES                      | NO         |
| ANAL     | typ analogového výstupu          | 0 až 20 mA (0 až 10 V)       | 0 až 20    |
|          |                                  | 4 až 20 mA (2 až 10 V)       |            |
|          |                                  | 20 až 0 mA (10 až 0 V)       |            |
|          |                                  | 20 až 4 mA (10 až 2 V)       |            |

# 5. Popis komunikačního protokolu

Komunikační protokol vychází z protokolu **PROFIBUS** vrstva 2. Datová část (vrstva 7) implementuje protokol.

Komunikace je typu **master - slave** a umožňuje obousměrnou komunikaci mezi stanicemi. Komunikace využívá rozhraní RS 232 nebo RS 485.

#### Znak telegramu (UART - Character)

stavba:



Každý UART - charakter má 11 bitů, a to 1 start-bit (ST) se signálem logická "0", 8 informačních bitů (I), 1 paritní bit pro sudou paritu (P) se signálem logická "1" a 1 stop-bit (SP) se signálem logická "1".

Použitá přenosová rychlost 9600 Bd.

## VRSTVA 2

## Formáty telegramů s pevnou délkou bez datového pole:

a) výzva

| SD1 | DA | SA | FC | FCS | ED |
|-----|----|----|----|-----|----|
|     |    |    |    |     |    |

b) odpověď

| SD1 SA | DA | FC | FCS | ED |
|--------|----|----|-----|----|
|--------|----|----|-----|----|

## Formáty telegramů s proměnnou délkou informačního pole:

a) výzva

| SD2 LE LEr SD2 DA SA FC | DATA FCS | ED |
|-------------------------|----------|----|
|-------------------------|----------|----|

b) odpověď

|  | SD2 LE LEr SD2 | SA DA | FC | DATA | FCS | ED |
|--|----------------|-------|----|------|-----|----|
|--|----------------|-------|----|------|-----|----|

#### Význam použitých symbolů

| SD1  | začátek rámce (Start Delimiter), kód 10H                                  |
|------|---------------------------------------------------------------------------|
| SD2  | začátek rámce (Start Delimiter), kód 68H                                  |
| LE   | délka informačního pole (LE ngth) začíná bytem DA a končí bytem před FCS. |
|      | Délka pole 4 - 249.                                                       |
| LEr  | opakování bytu délky informačního pole                                    |
| DA   | adresa cílové stanice                                                     |
| SA   | adresa zdrojové stanice                                                   |
| FC   | řídící byte (Frame Control)                                               |
| DATA | pole dat maximálně 246 bytů                                               |
| FCS  | kontrolní součet (Frame Check Sequence)                                   |
| ED   | konec rámce (End Delimiter), kód 16H                                      |
|      |                                                                           |

## LE, LEr - <u>Délka informačního pole</u>

Oba byty v hlavičce telegramu s proměnnou délkou informačního pole obsahují počet bytů informačního pole. Je v tom započítáno DA, SA, FC a DATA. Nejnižší hodnota LE je 4, nejvyšší 249. Tím lze přenést 1 - 246 bytů dat.

## DA, SA - Adresa stanice (DA - cílová, SA - zdrojová)

Adresy mohou ležet v rozmezí 0 - 127, přičemž adresa 127 je použita jako globální adresa pro vysílání zpráv pro všechny stanice. Při zavolení globální adresy přístroj pouze naslouchá (nevysílá). V odpovídajícím telegramu jsou DA a SA uvedeny v opačném pořadí.

Omezení: Maximální nastavitelná adresa u MRS, APOSYS je 126. MRS, APOSYS neumí rozšířit adresu pomocí bitu EXT, jak je definováno v PROFIBUSu.

## FC - <u>Řídící byt</u>

Řídící byt v hlavičce rámce obsahuje přenosovou funkci a informaci zabraňující ztrátě resp. zdvojení zprávy.

| <b>b8</b> | b7 | b6    | b5   | b4     | b3 | b2 | b1 |
|-----------|----|-------|------|--------|----|----|----|
| RES       | 1  | FCB   | FCV  | FUNKCE |    |    |    |
|           | 0  | Stn - | Туре |        |    |    |    |

RES - rezervováno

**b** 7 = 1 - rámec výzvy (Send / Request)

| FCB (Frame Count Bit):        | 0/1 - alternující bit sledu výzev           |
|-------------------------------|---------------------------------------------|
| FCV (Frame Count Bit Valid):  | 0 - funkce FCB neplatná                     |
|                               | 1 - funkce FCB platná                       |
| MRS nevyužívá bity FCB a FCV, | tyto bity mohou nabývat jakýchkoliv hodnot. |

b 7 = 0 - rámec potvrzení nebo odpovědi (Acknowledgement/Response)
 Stn - Type (Station type a FDL - STATUS) - charakterizuje typ účastníka

MRS je pouze pasivní účastník  $\Rightarrow$  b 6 a b 5 = 0.

## Funkce:

b 7 = 1 rámec výzvy

| kód         | funkce                                       |
|-------------|----------------------------------------------|
| 0x03        | Send Dat with Acknowledge low                |
|             | poslání dat s potvrzením, nízká priorita     |
| 0x05        | Send Dat with Acknowledge high               |
|             | poslání dat s potvrzením, vysoká priorita    |
| 0x09        | Request FDL - Status With Reply              |
|             | dotaz na Status                              |
| <b>0x0C</b> | Send and Request Data low                    |
|             | poslání a požadavek na data, nízká priorita  |
| 0X0D        | Send and Request Data high                   |
|             | poslání a požadavek na data, vysoká priorita |
| _           |                                              |

b 7 = 0 rámec odpovědi

| kód  | funkce                   |
|------|--------------------------|
| 0x00 | Acknowledgement positive |

|      | kladné potvrzení          |
|------|---------------------------|
| 0x02 | Acknowledgement negative  |
|      | záporné potvrzení         |
| 0x08 | Response FDL / FMA - Date |
|      | vyslání dat               |

## FCS - kontrolní součet

Kontrolní součet je dán aritmetickým součtem dat informačního rámce DA, SA, FC a DATA s integrováním přenosu.

#### Příklad zadání formátu telegramu s pevnou délkou bez datového pole:

```
      ŽÁDOST
      Počet vyslaných znaků:
      6

      10 02 04 49 4F 16
      Počet přijatých znaků:
      6

      ODPOVĚĎ
      Počet přijatých znaků:
      6

      10 04 02 00 06 16
      Počet přijatých znaků:
      6
```

#### Omezení plementace MRS 01/04, APOSYS 10

Neumožňuje rozšíření adresy bitem EXT, nevyužívá FCB a FCV v řídícím bytu FC.

#### Postup vyhodnocení zprávy:

Jestliže dojde přijímací stranou k zjištění chyby linkového protokolu (chyba rámce, parity), nebo k chybě v přenosovém protokolu (chybný startovací paritní, ukončovací znak, délka telegramu), přijímací strana zprávu nezpracuje ani na ni neodpoví. V případě nesplnitelného požadavku na vyslání nebo na zápis dat (přístroj data neobsahuje), se vyšle chybové hlášení s SD1 a FC = 2 (záporné potvrzení), v opačném případě se příslušná data vyšlou (SD2, FC = 8).

## VRSTVA 7

Vrstva 7 (**datová** část PROFIBUSu) implementuje protokol. Jsou k dispozici následující služby:

1) Čtení identifikace přístroje

- 2) Čtení jedné hodnoty
- 3) Čtení jedné hodnoty z matice hodnot
- 4) Zápis jedné hodnoty
- 5) Zápis jedné hodnoty do matice hodnot
- 6) Čtení stavu přístroje

## 1) <u>Čtení identifikace přístroje - Identify</u>

telegram SD2 datová část

a) žádost

1 byte REQ\_IDENTIFY

# define REQ\_IDENTIFY 0x00

b) odpověď

| 1 byte              | 32 byte       | 32 byte             | 32 byte              |
|---------------------|---------------|---------------------|----------------------|
| <b>RES_IDENTIFY</b> | Název výrobce | Název typu zařízení | Název verze zařízení |

# define RES\_IDENTIFY 0x80

## 2) <u>Čtení jedné hodnoty - Read</u>

telegram SD2, datová část

Čtená hodnota je určena segmentem, prvkem a typem hodnoty.

a) žádost

| 1 byte   | 1 byte   | 1 byte | 1 byte |
|----------|----------|--------|--------|
| REQ_READ | RQT_TYPE | SEG    | PRVEK  |

# define REQ\_READ 0x01

RQT\_TYPEtyp žádané proměnnéchar, int, long, floatb) odpověď14 byteRES READDATA

DATA: char - 1 byte

| int  | - 2 byte    |
|------|-------------|
| lon  | g - 4 byte  |
| floa | at - 4 byte |
|      |             |

# define RES\_READ 0x81

V případě chyby se vyšle chybové hlášení (SD1, FC = 2).

## 3) Čtení jedné hodnoty z matice hodnot - Read item of matrix

Čtená hodnota je určena segmentem (SEG), prvkem segmentu, typem hodnoty a souřadnicemi IY a IX. IY vyjadřuje řádek, IX sloupec.

a) žádost

| 1 byte   | 1 byte        | 1 byte | 1 byte | 1 byte   | 1 byte   |
|----------|---------------|--------|--------|----------|----------|
| REQ_READ | RQT_TYPE_ITEM | SEG    | PRVEK  | Index IY | Index IX |

| RQT_TYPE_ITEM | typ žádané proměnné | char, int, long, float |
|---------------|---------------------|------------------------|
|               |                     |                        |

# define REQ\_READ 0x01

b) odpověď

| 1 byte   |                              |             | 1 - 4 byte                           |      |  |  |
|----------|------------------------------|-------------|--------------------------------------|------|--|--|
| RES_READ |                              |             | DA                                   | TA   |  |  |
| DATA:    | char<br>int<br>long<br>float | -<br>-<br>- | 1 byte<br>2 byte<br>4 byte<br>4 byte |      |  |  |
| # define | RES_F                        | RE          | AD                                   | 0x81 |  |  |

#### 4) Zápis jedné hodnoty - Write

Zapisovaná hodnota je určena segmentem (SEG), prvkem a typem hodnoty. Zapisovaná hodnota musí ležet v oblasti povolení zápisu. a) žádost

| 1 byte           | 1 byte   | 1 byte | 1 byte | 1 - 4 byte |
|------------------|----------|--------|--------|------------|
| <b>REQ_WRITE</b> | RQT_TYPE | SEG    | PRVEK  | DATA       |

b) odpověď

Kladné potvrzení (SD1, FC = 0), v případě chyby FC = 2.

## 5) Zápis jedné hodnoty do matice hodnot - Write item of matrix

Zapisovaná hodnota je určena segmentem (SEG), prvkem, typem hodnoty a souřadnicemi IY a IX. IY vyjadřuje řádek, IX sloupec.

Zapisovaná hodnota musí ležet v oblasti povolení zápisu.

a) žádost

| 1 byte           | 1 byte        | 1 byte | 1 byte | 1 byte          | 1 byte          | 1-4 byte |
|------------------|---------------|--------|--------|-----------------|-----------------|----------|
| <b>REQ_WRITE</b> | RQT_TYPE_ITEM | SEG    | PRVEK  | <b>INDEX IY</b> | <b>INDEX IX</b> | DATA     |

b) odpověď

Kladné potvrzení (SD1, FC = 0), v případě chyby FC = 2.

## 6) <u>Čtení stavu přístroje</u>

telegram SD2, datová část

a) žádost

1 byte REQ Unit Status

b) odpověď

| 1 byte                 | n - byte        |
|------------------------|-----------------|
| <b>RES_Unit Status</b> | stav regulátoru |

Pro MRS 04 je podoba odpovědi: 45byte v pořadí první okruh až čtvrtý okruh.

| 1 byte       |   | 1 byte       | 1 byte         | 4      | l byte          | 1 by   | /te | 4 byte         |      |
|--------------|---|--------------|----------------|--------|-----------------|--------|-----|----------------|------|
| RES_Unit     | c | hod regulace | akční zásah    | žádaná |                 | výstup |     | naměř. hodr    | iota |
| Status       |   |              |                | h      | odnota          | relé   | 21  |                |      |
|              |   |              |                |        |                 |        | 1   |                | I    |
| l byte       |   | l byte       | 4 byte         |        | 1 byte          |        |     | 4 byte         |      |
| chod regulac | e | akční zásah  | žádaná hodn    | ota    | a výstup relé 2 |        | na  | naměř. hodnota |      |
|              |   |              |                |        |                 |        |     |                | _    |
| 1 byte       |   | 1 byte       | 4 byte         |        | 1 by            | rte    |     | 4 byte         |      |
| chod regulac | e | akční zásah  | žádaná hodnota |        | výstup relé 3   |        | na  | měř. hodnota   |      |
|              |   |              |                |        |                 |        |     |                | _    |
| 1 byte       |   | 1 byte       | 4 byte         |        | 1 by            | rte    |     | 4 byte         |      |
| chod regulac | e | akční zásah  | žádaná hodn    | ota    | výstup          | relé 4 | na  | měř. hodnota   |      |

## Význam použitých symbolů

**PRVEK** index databázové proměnné v rámci segmentu

SEG segment databáze

IY index řádku databázové proměnné typu matice

index sloupce databázové proměnné typu matice

| # define REQ_Unit Status            | 0x03 | požadavek na stav přístroje |
|-------------------------------------|------|-----------------------------|
| # define REQ_IDENTIFY               | 0x00 | požadavek na identifikaci   |
| # define RES_IDENTIFY               | 0x80 | odpověď identifikace        |
| # define REQ_READ                   | 0x01 | žádost na poslání dat       |
| # define RES_READ                   | 0x81 | poslání dat                 |
| # define REQ_WRITE                  | 0x02 | žádost na zápis dat         |
| <pre># define RES_Unit Status</pre> | 0x83 | odpověď na stav přístroje   |
|                                     |      |                             |

# RQT\_TYPE - typ žádané proměnné: char, int, long, float

| # define RQT_CHAR  | 0x00 | (1 byte) |
|--------------------|------|----------|
| # define RQT_INT   | 0x01 | (2 byte) |
| # define RQT_LONG  | 0x02 | (4 byte) |
| # define RQT_FLOAT | 0x03 | (4 byte) |

IX

## RQT\_TYPE\_ITEM - typ žádané proměnné: char, int, long, float - jedna hodnota z matice

| # define RQT_CHAR_ITEM  | 0x10 | (1 byte) |
|-------------------------|------|----------|
| # define RQT_INT_ITEM   | 0x11 | (2 byte) |
| # define RQT_LONG_ITEM  | 0x12 | (4 byte) |
| # define RQT_FLOAT_ITEM | 0x13 | (4 byte) |

#### Příklady zadání formátu telegramu s proměnnou délkou informačního pole:

#### 1) Čtení identifikace přístroje

ŽÁDOST Počet vyslaných znaků: 10 68 04 04 68 02 04 4C 00 52 16 ODPOVĚĎ Počet přijatých znaků: 106 68 64 64 68 04 02 08 80 41 2E 50 2E 4F 20 2D 20 45 4C 4D 4F 53 20 76 2E 6F 2E 73 2E 20 4E 6F 76 61 20 50 61 6B 61 20 20 20 20 20 20 32 30 2E 30 36 2E 39 36 46 49 52 4D 57 41 52 45 20 56 31 2E 39 36 20 20 20 20 43 35 31 20 4B 45 49 4C 20 56 35 2E 32 20 04 16 Výrobce : A.P.O. - ELMOS v.o.s. Nová Paka Тур : MRS 04 D 20.06.96 FIRMWARE V1.96 C51 KEIL V5.2 Verze :

## 2) Čtení jedné hodnoty

Čtení char: segment 12 (REGD), parametr 0 (typ regulace), hodnota 1 (proporcionální impulsní regulace PRDI).

 Segment:
 12
 Parametr:
 0
 Hodnota:
 1

 ŽÁDOST
 68
 02
 04
 42
 01
 00
 05
 5
 13

 ODPOVĚĎ
 68
 04
 02
 08
 81
 01
 90
 16

#### 3) Čtení jedné hodnoty z matice hodnot

Čtení float: segment 27 (rampové nastavení teploty), parametr 0 (první okruh), IY 0 (číslo programu), IX 0 (úsek programu), hodnota 100,0.

ΙY Hodnota Segment Parametr IΧ 27 0 0 100.0000 0 ŽÁDOST Počet vyslaných znaků: 15 68 09 09 68 02 04 4C 01 13 1B 00 00 00 81 16 ODPOVĚĎ Počet přijatých znaků: 14 68 08 08 68 04 02 08 81 00 00 C8 42 9A 16

Tento příklad neplatí pro provedení MRS 04-1x. Toto provedení nemá funkci čtení z matice hodnot.

#### 4) Zápis jedné hodnoty

Zápis char: segment 12 (REGO), parametr 0 (typ regulace), hodnota 1 (proporcionální impulsní regulace PROI).

 Segment:
 12
 Parametr:
 0
 Hodnota:
 1

 ŽÁDOST
 Počet vyslaných znaků:
 14

 ODPOVĚĎ
 Počet přijatých znaků:
 6

#### 5) Zápis jedné hodnoty do matice hodnot

Zápis float: segment 27 (rampové nastavení teploty), parametr 0 (první okruh), IY 0 (číslo programu), IX 0 (úsek programu), hodnota 100,0.

Segment Parametr ΙY IΧ Hodnota 0 100.0000 27 0 0 ŽÁDOST Počet vyslaných znaků: 19 68 0D 0D 68 02 04 43 02 13 1B 00 00 00 00 00 C8 42 84 16 ODPOVĚĎ Počet přijatých znaků: 6 10 04 02 00 06 16

Tento příklad neplatí pro provedení MRS 04-1x. Toto provedení nemá funkci zápis do matice hodnot.

## Definování proměnných MRS 04

#### SEG = 0

Segment je určený pouze pro čtení velikosti akčního zásahu.

| PRVEK  |             |          |            |       |
|--------|-------------|----------|------------|-------|
| číslo  | význam      | označení | rozsah     | typ   |
| 0 až 3 | akční zásah | PROC     | 0 až 100 % | float |

- 0 první okruh
- 1 druhý okruh
- 2 třetí okruh
- 3 čtvrtý okruh

#### SEG = 1

Segment je určený pouze pro čtení naměřené hodnoty.

| PRVEK  |                  |          |              |       |
|--------|------------------|----------|--------------|-------|
| číslo  | význam           | označení | rozsah       | typ   |
| 0 až 3 | naměřená hodnota | údaj     | -999 až 9999 | float |

## SEG = 2

Segment je určený pouze pro čtení stavu výstupu.

| PRVEK  |              |            |          |      |
|--------|--------------|------------|----------|------|
| číslo  | význam       | označení   | rozsah   | typ  |
| 0 až 3 | stav výstupu | out 1 až 4 | 0 nebo 1 | char |

stav výstupu: 0 = vypnuto 1 = zapnuto

## SEG = 3

Nastavení žádané hodnoty v menu COMP.

| PRVEK  |                          |          |              |       |
|--------|--------------------------|----------|--------------|-------|
| číslo  | význam                   | označení | rozsah       | typ   |
| 0 až 3 | nastavení žádané hodnoty | COMP     | -999 až 9999 | float |

SEG = 4

Nastavení optického alarmu low v menu OPL\_.

| PRVEK  |                   |          |              |       |
|--------|-------------------|----------|--------------|-------|
| číslo  | význam            | označení | rozsah       | typ   |
| 0 až 3 | optický alarm low | OPL_     | -999 až 9999 | float |

## SEG = 5

Nastavení optického alarmu high v menu OPH\_.

| PRVEK  |                    |          |              |       |
|--------|--------------------|----------|--------------|-------|
| číslo  | význam             | označení | rozsah       | typ   |
| 0 až 3 | optický alarm high | OPH_     | -999 až 9999 | float |

#### SEG = 6

Nastavení typu snímače v menu 5 E N 5.

| PRVEK  |           |          |        |      |
|--------|-----------|----------|--------|------|
| číslo  | význam    | označení | rozsah | typ  |
| 0 až 3 | typ sondy | SENS     | 0 až 2 | char |

typ sondy: 0 = 0 až 20 mA 1 = 4 až 20 mA 2 = 0 až 5 V

#### SEG = 7

Nastavení offsetu v menu OFF5.

| PRVEK  |        |          |              |       |
|--------|--------|----------|--------------|-------|
| číslo  | význam | označení | rozsah       | typ   |
| 0 až 3 | offset | OFFS     | -999 až 9999 | float |

#### SEG = 8

Nastavení počátku vstupního rozsahu v menu STRS.

| PRVEK  |              |          |              |       |
|--------|--------------|----------|--------------|-------|
| číslo  | význam       | označení | rozsah       | typ   |
| 0 až 3 | start senzor | STRS     | -999 až 9999 | float |

## SEG = 9

Nastavení konce vstupního rozsahu v menu ENDS.

| PRVEK  |            |          |              |       |
|--------|------------|----------|--------------|-------|
| číslo  | význam     | označení | rozsah       | typ   |
| 0 až 3 | end senzor | ENDS     | -999 až 9999 | float |

## SEG = 10

Nastavení polohy desetinné tečky v menu \_ D P \_.

| PRVEK  |                 |          |        |      |
|--------|-----------------|----------|--------|------|
| číslo  | význam          | označení | rozsah | typ  |
| 0 až 3 | desetinná tečka | _DP _    | 0 až 2 | char |

desetinná tečka:

0 = na celé číslo

1 = na jedno desetinné místo

2 = na dvě desetinná místa

#### **SEG** = 11

Přiřazení vstupu k regulačnímu okruhu v menu.

| PRVEK  |        |           |        |      |
|--------|--------|-----------|--------|------|
| číslo  | význam | označení  | rozsah | typ  |
| 0 až 3 | směr   | 0 U T 1-4 | 0 až 3 | char |

| přiřazení vstupu: | 0 = přiřazení vstupu   N _ 1<br>1 = přiřazení vstupu   N _ 2<br>2 = přiřazení vstupu   N _ 3<br>3 = přiřazení vstupu   N _ 4 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|
|                   | 5 = pmazem vstupu m - 1                                                                                                      |

Nastavení typu regulace v menu REGO.

| PRVEK  |              |          |        |      |
|--------|--------------|----------|--------|------|
| číslo  | význam       | označení | rozsah | typ  |
| 0 až 3 | typ regulace | REGO     | 0 až 4 | char |

typ regulace: $0 = 0 \ \mbox{NOF}$ dvoustavová regulace1 = P R 0 Iproporcionální impulsní regulace2 = P R 0 3proporcionální třístavová regulace3 = P I 0 IPID impulsní regulace4 = P I 0 3PID třístavová regulace

## **SEG = 13**

Nastavení automatického časovače změn výstupu v menu \_ A T \_.

| PRVEK  |                               |          |            |     |
|--------|-------------------------------|----------|------------|-----|
| číslo  | význam                        | označení | rozsah     | typ |
| 0 až 3 | autom.časovač změn<br>výstupu | _ AT _   | 1 až 1000s | int |

## SEG = 14

Nastavení hystereze v menu H Y 5 T.

| PRVEK  |           |          |           |       |
|--------|-----------|----------|-----------|-------|
| číslo  | význam    | označení | rozsah    | typ   |
| 0 až 3 | hystereze | HYST     | 0 až 9999 | float |

## SEG = 15

Nastavení chlazení / topení v menu COHE.

|        |                   | PRVEK    |          |      |
|--------|-------------------|----------|----------|------|
| číslo  | význam            | označení | rozsah   | typ  |
| 0 až 3 | chlazení / topení | COHE     | 0 nebo 1 | char |

| chlazení / topení: | 0 = HERT | topení   |
|--------------------|----------|----------|
|                    | 1 = COOL | chlazení |

## SEG = 16

Nastavení pásma proporcionality v menu \_ PB \_.

| PRVEK  |                       |          |        |       |
|--------|-----------------------|----------|--------|-------|
| číslo  | význam                | označení | rozsah | typ   |
| 0 až 3 | pásmo proporcionality | _ P B _  |        | float |

## **SEG** = 17

Nastavení výkonového posuvu v menu  $P U_{-}$ .

| PRVEK  |                |          |              |       |
|--------|----------------|----------|--------------|-------|
| číslo  | význam         | označení | rozsah       | typ   |
| 0 až 3 | výkonový posuv | PW_      | -999 až 9999 | float |

#### **SEG = 18**

Nastavení zesílení v menu \_PB\_.

| PRVEK                            |          |         |             |       |
|----------------------------------|----------|---------|-------------|-------|
| číslo význam označení rozsah typ |          |         |             |       |
| 0 až 3                           | zesílení | _ P B _ | -100 až 100 | float |

#### **SEG = 19**

Nastavení doby přeběhu servopohonu v menu D 5 E R.

| PRVEK  |            |          |            |     |
|--------|------------|----------|------------|-----|
| číslo  | význam     | označení | rozsah     | typ |
| 0 až 3 | doba serva | DSER     | 1 až 9999s | int |

## SEG = 20

Nastavení periody pulsu v menu PER\_.

| PRVEK  |               |          |            |     |
|--------|---------------|----------|------------|-----|
| číslo  | význam        | označení | rozsah     | typ |
| 0 až 3 | perioda pulsu | PER_     | 1 až 9999s | int |

**SEG = 21** 

Nastavení doby vzorkování v menu TPID.

| PRVEK                            |                 |      |            |       |
|----------------------------------|-----------------|------|------------|-------|
| číslo význam označení rozsah typ |                 |      |            | typ   |
| 0 až 3                           | doba vzorkování | TPID | 1 až 1000s | float |

#### **SEG = 22**

Nastavení integrační konstanty v menu INT\_.

| PRVEK  |                      |          |              |       |
|--------|----------------------|----------|--------------|-------|
| číslo  | význam               | označení | rozsah       | typ   |
| 0 až 3 | integrační konstanta | INT_     | 0,01 až 9999 | float |

#### SEG = 23

Nastavení derivační konstanty v menu DER\_.

| PRVEK  |                     |          |              |       |
|--------|---------------------|----------|--------------|-------|
| číslo  | význam              | označení | rozsah       | typ   |
| 0 až 3 | derivační konstanta | DER_     | 0,01 až 9999 | float |

## SEG = 24

Nastavení parametrů, které jsou společné pro všechny okruhy - vstupní integrační filtr, heslo 1, heslo 2 a adresa přístroje.

| PRVEK |                  |          |              |      |
|-------|------------------|----------|--------------|------|
| číslo | význam           | označení | rozsah       | typ  |
| 0     | filtr            | FILT     | 0 až 100     | char |
| 1     | heslo 1          | HES1     | -999 až 9999 | int  |
| 2     | heslo 2          | HES2     | -999 až 9999 | int  |
| 3     | adresa přístroje | ADR_     | 0 až 126     | char |

| Nastavení průběhu žádané hodn | oty <b>PR_H</b> . Platí | pro verze MRS 04-2x a 3x. |
|-------------------------------|-------------------------|---------------------------|
|-------------------------------|-------------------------|---------------------------|

| PRVEK  |                       |          |        |      |
|--------|-----------------------|----------|--------|------|
| číslo  | význam                | označení | rozsah | typ  |
| 0 až 3 | průběh žádané hodnoty | PR_H     | 0 až 3 | char |

průběh: 0 = 5 E T P regulace na konstantní hodnotu  $1 = R R \Pi P$  regulace rampová  $2 = J U \Pi P$  regulace skoková  $3 = E T R \Pi$  regulace ekvitermní

## SEG = 26

Nastavení čísla programu C \_ P R. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                |          |        |      |
|--------|----------------|----------|--------|------|
| číslo  | význam         | označení | rozsah | typ  |
| 0 až 3 | číslo programu | C_PR     | 0 až 4 | char |

Pro každý okruh lze zadat 5 programů pro libovolný průběh žádané hodnoty.

## **SEG = 27**

Nastavení žádaných hodnot teploty pro rampovou regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                           |          |              |         |
|--------|---------------------------|----------|--------------|---------|
| číslo  | význam                    | označení | rozsah       | typ     |
| 0 až 3 | rampové nastavení teploty | ۲XX_ C   | -999 až 9999 | * float |

## SEG = 28

Nastavení času pro rampovou regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                        |          |                |       |
|--------|------------------------|----------|----------------|-------|
| číslo  | význam                 | označení | rozsah         | typ   |
| 0 až 3 | rampové nastavení času | T _XX    | 0 až 9999 min. | * int |

Nastavení žádaných hodnot teploty pro skokovou regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                           |          |              |         |
|--------|---------------------------|----------|--------------|---------|
| číslo  | význam                    | označení | rozsah       | typ     |
| 0 až 3 | skokové nastavení teploty | ۲XX_ C   | -999 až 9999 | * float |

#### SEG = 30

Nastavení časových intervalů pro skokovou regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                        |          |                |         |
|--------|------------------------|----------|----------------|---------|
| číslo  | význam                 | označení | rozsah         | typ     |
| 0 až 3 | skokové nastavení času | T_XX     | 0 až 9999 min. | * float |

#### SEG = 31

Nastavení teploty vody (1C) pro ekvitermní regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |            |          |              |         |
|--------|------------|----------|--------------|---------|
| číslo  | význam     | označení | rozsah       | typ     |
| 0 až 3 | teplota 1C | 1CXX     | -999 až 9999 | * float |

#### **SEG = 32**

Nastavení teploty vzduchu (2C) pro ekvitermní regulaci. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |            |          |              |         |
|--------|------------|----------|--------------|---------|
| číslo  | význam     | označení | rozsah       | typ     |
| 0 až 3 | teplota 2C | 2 CXX    | -999 až 9999 | * float |

## \* RQT\_TYPE\_ITEM zápis do matice

| název proměnné            | IX                    | IY                    |
|---------------------------|-----------------------|-----------------------|
| rampové nastavení teploty | číslo programu 0 až 4 | úsek programu 0 až 19 |
| rampové nastavení času    | číslo programu 0 až 4 | úsek programu 0 až 19 |
| skokové nastavení teploty | číslo programu 0 až 4 | úsek programu 0 až 19 |
| skokové nastavení času    | číslo programu 0 až 4 | úsek programu 0 až 19 |
| teplota vody 1C           | číslo programu 0 až 4 | číslo bodu 0 až 4     |
| teplota vzduchu 2C        | číslo programu 0 až 4 | číslo bodu 0 až 4     |
Nastavení udržovacího režimu (STANDBY). Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                           |          |          |      |
|--------|---------------------------|----------|----------|------|
| číslo  | význam                    | označení | rozsah   | typ  |
| 0 až 3 | udržovací režim (STANDBY) | 5BY_     | 0 nebo 1 | char |

0 = vypnuto

1 = zapnuto

# SEG = 34

Nastavení čekání (HOLD). Platí pro verze MRS 04-2x a 3x.

| PRVEK  |               |          |          |      |
|--------|---------------|----------|----------|------|
| číslo  | význam        | označení | rozsah   | typ  |
| 0 až 3 | čekání (HOLD) | HOLD     | 0 nebo 1 | char |

0 = vypnuto

1 = zapnuto

# SEG = 35

Nastavení chodu regulace. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |               |          |          |      |
|--------|---------------|----------|----------|------|
| číslo  | význam        | označení | rozsah   | typ  |
| 0 až 3 | chod regulace | _ G O _  | 0 nebo 1 | char |

0 = vypnuto

1 = zapnuto

# SEG = 36

Segment je určen pouze pro čtení stavu žádané hodnoty. Platí pro verze MRS 04-2x a 3x.

| PRVEK  |                     |          |              |       |
|--------|---------------------|----------|--------------|-------|
| číslo  | význam              | označení | rozsah       | typ   |
| 0 až 3 | stav žádané hodnoty | údaj     | -999 až 9999 | float |

#### SEG = 37

Nastavení minut spuštění regulace. Platí pro verze MRS 04-3x.

| PRVEK  |                 |          |         |      |
|--------|-----------------|----------|---------|------|
| číslo  | význam          | označení | rozsah  | typ  |
| 0 až 3 | minuty spuštění | MIN _    | 0 až 59 | char |

#### SEG = 38

Nastavení hodin spuštění regulace. Platí pro verze MRS 04-3x.

| PRVEK  |                 |          |         |      |
|--------|-----------------|----------|---------|------|
| číslo  | význam          | označení | rozsah  | typ  |
| 0 až 3 | hodiny spuštění | HOD_     | 0 až 23 | char |

#### SEG = 39

Nastavení datumu spuštění regulace. Platí pro verze MRS 04-3x.

| PRVEK  |                |          |         |      |
|--------|----------------|----------|---------|------|
| číslo  | význam         | označení | rozsah  | typ  |
| 0 až 3 | datum spuštění | DEN_     | 0 až 31 | char |

#### SEG = 40

Nastavení hodiny přepnutí na program COMFORT. Platí pro verze MRS 04-3x.

| PRVEK  |                   |          |         |      |
|--------|-------------------|----------|---------|------|
| číslo  | význam            | označení | rozsah  | typ  |
| 0 až 3 | hodiny přepnutí 1 | HOD1     | 0 až 22 | char |

# SEG = 41

Nastavení minut přepnutí na program COMFORT. Platí pro verze MRS 04-3x.

| PRVEK  |                   |          |         |      |
|--------|-------------------|----------|---------|------|
| číslo  | význam            | označení | rozsah  | typ  |
| 0 až 3 | minuty přepnutí 1 | n in 1   | 1 až 59 | char |

#### SEG = 42

Nastavení čísla programu COMFORT. Platí pro verze MRS 04-3x.

| PRVEK  |                        |          |        |      |
|--------|------------------------|----------|--------|------|
| číslo  | význam                 | označení | rozsah | typ  |
| 0 až 3 | číslo programu COMFORT | C 0 M _  | 0 až 4 | char |

#### SEG = 43

Nastavení hodiny přepnutí na program ECONOMY. Platí pro verze MRS 04-3x.

| PRVEK  |                   |          |         |      |
|--------|-------------------|----------|---------|------|
| číslo  | význam            | označení | rozsah  | typ  |
| 0 až 3 | hodiny přepnutí 2 | HOD2     | 1 až 23 | char |

#### SEG = 44

Nastavení minut přepnutí na program ECONOMY. Platí pro verze MRS 04-3x.

| PRVEK  |                   |          |         |      |
|--------|-------------------|----------|---------|------|
| číslo  | význam            | označení | rozsah  | typ  |
| 0 až 3 | minuty přepnutí 2 | MIN2     | 0 až 59 | char |

#### SEG = 45

Nastavení čísla programu ECONOMY. Platí pro verze MRS 04-3x.

| PRVEK  |                        |          |        |      |
|--------|------------------------|----------|--------|------|
| číslo  | význam                 | označení | rozsah | typ  |
| 0 až 3 | číslo programu ECONOMY | ECO:_    | 0 až 4 | char |

# 6. Propojení regulátoru s PC

Regulátor umožňuje nastavení veškerých parametrů z počítače a monitorování průběhu regulace na počítači.

#### Hardwarové propojení regulátoru s počítačem

Regulátor nutno propojit s počítačem kabelem, který je na straně regulátoru zakončen konektorem Cannon 9 pin, na druhé straně konektorem Cannon 9 pin nebo Cannon 25 pin (připojení k sériovému portu COM1 nebo COM2). Kabel není součástí dodávky. Lze jej zakoupit v síti prodejen výpočetní techniky nebo objednat u výrobce regulátoru (nutno zadat délku kabelu).

Nákres propojení:





# 6.1 Aplikace software APOELMOS

Požadavky na hardware: počítač: Pentium 100 grafická karta: VGA mechanika CD Požadavky na software: operační systém MS Windows 95/98/ME

Instalace software předpokládá základní znalosti pro práci s PC a vybrané instrukce MS Windows.

# 6.2 Postup při instalaci:

- Vložte CD ROM do mechaniky CD počítače. Pokud vám po vložení CD ROM do mechaniky naběhne Internet Explorer (autorun), volte z konkrétní nabídky "Přístroje" a vyberte program pro nastavení dat regulátoru MRS 04 (viz. Legenda – stažení / instalace sw).
- 2) Na disku vytvořte adresář
- 3) Program uložíme na disk do vytvořeného adresáře.
- 4) Zazipovaný soubor rozbalíme.
- 5) Spustte soubor **mrs04.exe**.